1,941 research outputs found

    Thin Coating Technologies and Applications in High-Temperature Solid Oxide Fuel Cells

    Get PDF

    Thermally and electrochemically induced electrode/electrolyte interfaces in solid oxide fuel cells: An AFM and EIS Study

    Get PDF
    In high temperature solid oxide fuel cells (SOFCs), electrode/electrolyte interfaces play a critical role in the electrocatalytic activity and durability of the cells. In this study, thermally and electrochemically induced electrode/electrolyte interfaces were investigated on pre-sintered and in situ assembled (La0.8Sr0.2)0.90MnO3 (LSM) and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) electrodes on Y2O3-ZrO2 (YSZ) and Gd0.2Ce0.8O2 (GDC) electrolytes, using atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The results indicate that thermally induced interface is characterized by convex contact rings with depth of 100–400 nm and diameter in agreement with the particle size of pre-sintered LSM and LSCF electrodes, while the electrochemically induced interfaces under cathodic polarization conditions on in situ assembled electrodes are characterized by particle-shaped contact marks or clusters (50–100 nm in diameter). The number and distribution of contact clusters depend on the cathodic current density as well as the electrode and electrolyte materials. The contact clusters on the in situ assembled LSCF/GDC interface are substantially smaller than that on the in situ assembled LSM/GDC interface likely due to the high mixed ionic and electronic conductivities of LSCF materials. The results show that the electrochemically induced interface is most likely resulting from the incorporation of oxygen species and cation interdiffusion under cathodic polarization conditions. However, the electrocatalytic activity of electrochemically induced electrode/electrolyte interfaces is comparable to the thermally induced interfaces for the O2 reduction reaction under SOFC operation conditions

    WHU-Stereo: A Challenging Benchmark for Stereo Matching of High-Resolution Satellite Images

    Full text link
    Stereo matching of high-resolution satellite images (HRSI) is still a fundamental but challenging task in the field of photogrammetry and remote sensing. Recently, deep learning (DL) methods, especially convolutional neural networks (CNNs), have demonstrated tremendous potential for stereo matching on public benchmark datasets. However, datasets for stereo matching of satellite images are scarce. To facilitate further research, this paper creates and publishes a challenging dataset, termed WHU-Stereo, for stereo matching DL network training and testing. This dataset is created by using airborne LiDAR point clouds and high-resolution stereo imageries taken from the Chinese GaoFen-7 satellite (GF-7). The WHU-Stereo dataset contains more than 1700 epipolar rectified image pairs, which cover six areas in China and includes various kinds of landscapes. We have assessed the accuracy of ground-truth disparity maps, and it is proved that our dataset achieves comparable precision compared with existing state-of-the-art stereo matching datasets. To verify its feasibility, in experiments, the hand-crafted SGM stereo matching algorithm and recent deep learning networks have been tested on the WHU-Stereo dataset. Experimental results show that deep learning networks can be well trained and achieves higher performance than hand-crafted SGM algorithm, and the dataset has great potential in remote sensing application. The WHU-Stereo dataset can serve as a challenging benchmark for stereo matching of high-resolution satellite images, and performance evaluation of deep learning models. Our dataset is available at https://github.com/Sheng029/WHU-Stere

    A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells

    Get PDF
    A La0.8Sr0.2MnO3 (LSM)/La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) core–shell structured composite cathode of solid oxide fuel cells (SOFCs) has been fabricated by wet infiltration followed by a rapid sintering (RS) process. The RS is carried out by placing LSCF infiltrated LSM electrodes directly into a preheated furnace at 800 °C for 10 min and cooling down very quickly. The heating and cooling step takes about 20 s, substantially shorter than 10 h in the case of conventional sintering (CS) process. The results indicate the formation of a continuous and almost non-porous LSCF thin film on the LSM scaffold, forming a LSCF/LSM core–shell structure. Such RS-formed infiltrated LSCF–LSM cathodes show an electrode polarization resistance of 2.1 Ω cm2 at 700 °C, substantially smaller than 88.2 Ω cm2 of pristine LSM electrode. The core–shell structured LSCF–LSM electrodes also show good operating stability at 700 °C and 600 °C over 24–40 h
    • …
    corecore